cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139664 Primes of the form x^2 + 760*y^2.

This page as a plain text file.
%I A139664 #20 Sep 08 2022 08:45:33
%S A139664 761,769,809,881,929,1049,1201,1289,1489,1601,1721,2129,2281,2441,
%T A139664 2609,2969,3041,3049,3089,3121,3209,3329,3361,3769,3881,4001,4129,
%U A139664 4241,4409,4481,4561,4721,4729,4889,5441,5521,5641,5801,5849,6089
%N A139664 Primes of the form x^2 + 760*y^2.
%C A139664 Discriminant = -3040. See A139643 for more information.
%C A139664 The primes are congruent to {1, 9, 49, 81, 121, 161, 169, 201, 289, 321, 329, 441, 481, 529, 609, 681, 689, 729} (mod 760).
%H A139664 Vincenzo Librandi and Ray Chandler, <a href="/A139664/b139664.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi).
%H A139664 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t A139664 QuadPrimes2[1, 0, 760, 10000] (* see A106856 *)
%o A139664 (Magma) [ p: p in PrimesUpTo(7000) | p mod 760 in {1, 9, 49, 81, 121, 161, 169, 201, 289, 321, 329, 441, 481, 529, 609, 681, 689, 729}]; // _Vincenzo Librandi_, Jul 29 2012
%o A139664 (Magma) k:=760; [p: p in PrimesUpTo(6100) | NormEquation(k, p) eq true]; // _Bruno Berselli_, Jun 01 2016
%K A139664 nonn,easy
%O A139664 1,1
%A A139664 _T. D. Noe_, Apr 29 2008