cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139691 Discriminants of the normalized general quintic polynomials with nonnegative coefficients.

This page as a plain text file.
%I A139691 #9 Nov 05 2017 19:12:51
%S A139691 0,12,40,48,49,69,84,92,93,117,124,125,128,132,144,161,176,184,189,
%T A139691 217,229,240,245,256,257,272,312,320,324,332,333,340,348,392,400,432,
%U A139691 448,456,472,512,549,588,592,605,609,688,697,708,725,761,804,832,836,837
%N A139691 Discriminants of the normalized general quintic polynomials with nonnegative coefficients.
%C A139691 Possible discriminants of the general normalized quintic polynomial x^5+b*x^4+c*x^3+d*x^2+e*x+f with b,c,d,e,f>=0
%D A139691 Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257.  Mathematical Reviews, MR2312537.  Zentralblatt MATH, Zbl 1133.11012.
%t A139691 aa = {}; a = 1; Do[Print[f]; Do[Do[Do[Do[k = b^2 c^2 d^2 e^2 - 4 a c^3 d^2 e^2 - 4 b^3 d^3 e^2 + 18 a b c d^3 e^2 - 27 a^2 d^4 e^2 - 4 b^2 c^3 e^3 + 16 a c^4 e^3 + 18 b^3 c d e^3 - 80 a b c^2 d e^3 - 6 a b^2 d^2 e^3 + 144 a^2 c d^2 e^3 - 27 b^4 e^4 + 144 a b^2 c e^4 - 128 a^2 c^2 e^4 - 192 a^2 b d e^4 + 256 a^3 e^5 - 4 b^2 c^2 d^3 f + 16 a c^3 d^3 f + 16 b^3 d^4 f - 72 a b c d^4 f + 108 a^2 d^5 f + 18 b^2 c^3 d e f - 72 a c^4 d e f - 80 b^3 c d^2 e f + 356 a b c^2 d^2 e f + 24 a b^2 d^3 e f - 630 a^2 c d^3 e f - 6 b^3 c^2 e^2 f + 24 a b c^3 e^2 f + 144 b^4 d e^2 f - 746 a b^2 c d e^2 f + 560 a^2 c^2 d e^2 f + 1020 a^2 b d^2 e^2 f - 36 a b^3 e^3 f + 160 a^2 b c e^3 f - 1600 a^3 d e^3 f - 27 b^2 c^4 f^2 + 108 a c^5 f^2 + 144 b^3 c^2 d f^2 - 630 a b c^3 d f^2 - 128 b^4 d^2 f^2 + 560 a b^2 c d^2 f^2 + 825 a^2 c^2 d^2 f^2 - 900 a^2 b d^3 f^2 - 192 b^4 c e f^2 + 1020 a b^2 c^2 e f^2 - 900 a^2 c^3 e f^2 + 160 a b^3 d e f^2 - 2050 a^2 b c d e f^2 + 2250 a^3 d^2 e f^2 - 50 a^2 b^2 e^2 f^2 + 2000 a^3 c e^2 f^2 + 256 b^5 f^3 - 1600 a b^3 c f^3 + 2250 a^2 b c^2 f^3 + 2000 a^2 b^2 d f^3 - 3750 a^3 c d f^3 - 2500 a^3 b e f^3 + 3 125 a^4 f^4; If[k > 0 && k < 1000, AppendTo[aa, k]], {b, 0, 30}], {c, 0, 30}], {d, 0, 30}], {e, 0, 30}], {f, 0, 30}]; Union[aa] (*Artur Jasinski*)
%Y A139691 Cf. A014601, A042948.
%K A139691 nonn
%O A139691 1,2
%A A139691 _Artur Jasinski_, Apr 29 2008