cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139700 Binomial transform of [1, 30, 30, 30, ...].

This page as a plain text file.
%I A139700 #19 Nov 23 2018 22:13:15
%S A139700 1,31,91,211,451,931,1891,3811,7651,15331,30691,61411,122851,245731,
%T A139700 491491,983011,1966051,3932131,7864291,15728611,31457251,62914531,
%U A139700 125829091,251658211,503316451,1006632931,2013265891,4026531811,8053063651,16106127331
%N A139700 Binomial transform of [1, 30, 30, 30, ...].
%C A139700 The binomial transform of [1, c, c, c, ...] has the terms a(n) = 1 - c + c*2^(n-1) if the offset 1 is chosen. The o.g.f. of the a(n) is x{1+(c-2)x}/{(2x-1)(x-1)}. This applies to A139634 with c=10, to A139635 with c=11, to A139697 with c=12, to A139698 with c=25 and to A099003, A139700, A139701 accordingly. - _R. J. Mathar_, May 11 2008
%H A139700 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F A139700 A007318 * [1, 30, 30, 30, ...].
%F A139700 a(n) = 30*2^(n-1) - 29. - _Emeric Deutsch_, May 07 2008
%F A139700 a(n) = 2*a(n-1) + 29 (with a(1)=1). - _Vincenzo Librandi_, Nov 24 2010
%F A139700 From _Colin Barker_, Mar 11 2014: (Start)
%F A139700 a(n) = 3*a(n-1) - 2*a(n-2).
%F A139700 G.f.: x*(28*x+1) / ((x-1)*(2*x-1)). (End)
%e A139700 a(3) = 91 = (1, 2, 1) dot (1, 30, 30) = (1 + 60 + 30).
%p A139700 seq(30*2^(n-1)-29,n=1..27); # _Emeric Deutsch_, May 07 2008
%t A139700 LinearRecurrence[{3,-2},{1,31},30] (* _Harvey P. Dale_, Apr 18 2018 *)
%o A139700 (PARI) Vec(x*(28*x+1)/((x-1)*(2*x-1)) + O(x^100)) \\ _Colin Barker_, Mar 11 2014
%Y A139700 Cf. A139699, A139698, A139697, A139635, A139634.
%K A139700 nonn,easy
%O A139700 1,2
%A A139700 _Gary W. Adamson_, Apr 29 2008
%E A139700 More terms from _Emeric Deutsch_, May 07 2008
%E A139700 More terms from _Colin Barker_, Mar 11 2014