cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139715 G.f. A(x) satisfies: A(x) = G(G(x)) where G(x) = x - A(x)^2 = g.f. of A139702.

This page as a plain text file.
%I A139715 #2 Mar 30 2012 18:37:10
%S A139715 1,-2,10,-69,568,-5250,52792,-566830,6420640,-76095972,938077528,
%T A139715 -11975951312,157808048792,-2140767942096,29835756120952,
%U A139715 -426490803168368,6244476409802008,-93541594534237356,1432261132629484052,-22397290780155132728
%N A139715 G.f. A(x) satisfies: A(x) = G(G(x)) where G(x) = x - A(x)^2 = g.f. of A139702.
%F A139715 Series_Reversion(A(x)) = F(F(x)) = F(x) + x^2 where F(x) = g.f. of A138740.
%e A139715 A(x) = x - 2*x^2 + 10*x^3 - 69*x^4 + 568*x^5 - 5250*x^6 + 52792*x^7 -+...
%e A139715 Let G(x) = x - A(x)^2 = g.f. of A139702:
%e A139715 G(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 + 14152*x^7 -+...
%e A139715 then A(x) = G(G(x)).
%o A139715 (PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1,n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(subst(A,x,A+x*O(x^n)), n))}
%Y A139715 Cf. A139702, A138740.
%K A139715 sign
%O A139715 1,2
%A A139715 _Paul D. Hanna_, Apr 30 2008