This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139764 #50 Feb 16 2025 08:33:08 %S A139764 1,2,3,1,5,1,2,8,1,2,3,1,13,1,2,3,1,5,1,2,21,1,2,3,1,5,1,2,8,1,2,3,1, %T A139764 34,1,2,3,1,5,1,2,8,1,2,3,1,13,1,2,3,1,5,1,2,55,1,2,3,1,5,1,2,8,1,2,3, %U A139764 1,13,1,2,3,1,5,1,2,21,1,2,3,1,5,1,2,8,1,2,3,1,89 %N A139764 Smallest term in Zeckendorf representation of n. %C A139764 Also called a "Fibonacci fractal". %C A139764 Appears to be the same as the "ruler of Fibonaccis" mentioned by Knuth. - _N. J. A. Sloane_, Aug 03 2012 %C A139764 a(n) is also the number of matches to take away to win in a certain match game (see Rocher et al.). %C A139764 The frequencies of occurrences of the values in this sequence and A035614 are related by the golden ratio. %D A139764 D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179. - From _N. J. A. Sloane_, Aug 03 2012 %H A139764 Steve Witham, <a href="/A139764/b139764.txt">Table of n, a(n) for n = 1..9999</a> %H A139764 Alex Bogomolny, <a href="http://www.cut-the-knot.org/Curriculum/Games/TakeAway.shtml#theory">Theory of Take-Away Games</a> %H A139764 Sylvain Rocher, Elodie Privat, Laurent Orban, Alexandre Mothe and Laurent Thouy, <a href="http://mathematiques.ac-bordeaux.fr/elv/clubs/mej/mej2005/allumettes.pdf">La stratégie des allumettes</a> %H A139764 A. J. Schwenk, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/8-3/schwenk-a.pdf">Take-Away Games</a>, The Fibonacci Quarterly, v 8, no 3 (1970), 225-234. %H A139764 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WythoffArray.html">Wythoff Array</a> %H A139764 Wikipedia, <a href="http://en.wikipedia.org/wiki/Zeckendorf's_theorem">Zeckendorf's theorem</a> %F A139764 a(n) = n if n is a Fibonacci number, else a( n - (largest Fibonacci number < n) ). %F A139764 a(n) = the value of the (exactly one) digit that turns on between the Fibonacci-base representations of n-1 and n. E.g., from 6 (1001) to 7 (1010), the two's digit turns on. %F A139764 a(n) = top element of the column of the Wythoff array that contains n. %F A139764 a(n) = A000045(A035614(n-1) + 2). [Offsets made precise by _Peter Munn_, Apr 13 2021] %F A139764 a(n) = A035517(n,0). - _Reinhard Zumkeller_, Mar 10 2013 %e A139764 The Zeckendorf representation of 7 = 5 + 2, so a(7) = 2. %p A139764 A000045 := proc(n) combinat[fibonacci](n) ; end: %p A139764 A087172 := proc(n) %p A139764 local a,i ; %p A139764 a := 0 ; %p A139764 for i from 0 do %p A139764 if A000045(i) <= n then %p A139764 a := A000045(i) ; %p A139764 else %p A139764 RETURN(a) ; %p A139764 fi ; %p A139764 od: %p A139764 end: %p A139764 A139764 := proc(n) %p A139764 local nResid,prevF ; %p A139764 nResid := n ; %p A139764 while true do %p A139764 prevF := A087172(nResid) ; %p A139764 if prevF = nResid then %p A139764 RETURN(prevF) ; %p A139764 else %p A139764 nResid := nResid-prevF ; %p A139764 fi ; %p A139764 od: %p A139764 end: %p A139764 seq(A139764(n),n=1..120) ; %p A139764 # _R. J. Mathar_, May 22 2008 %t A139764 f[n_] := (k = 1; ff = {}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); a[n_] := First[ If[n == 0, 0, r = n; s = {}; fr = f[n]; While[r > 0, lf = Last[fr]; If[lf <= r, r = r - lf; PrependTo[s, lf]]; fr = Drop[fr, -1]]; s]]; Table[a[n], {n, 1, 89}] (* _Jean-François Alcover_, Nov 02 2011 *) %o A139764 (PARI) a(n)=my(f);forstep(k=log(n*sqrt(5))\log(1.61803)+2, 2, -1, f=fibonacci(k);if(f<=n,n-=f;if(!n,return(f));k--)) \\ _Charles R Greathouse IV_, Nov 02 2011 %o A139764 (Haskell) %o A139764 a139764 = head . a035517_row -- _Reinhard Zumkeller_, Mar 10 2013 %Y A139764 Cf. A000045, A035614, A107017, A014417, A006519. %Y A139764 Cf. A087172. %K A139764 nonn,nice %O A139764 1,2 %A A139764 Steve Witham (sw(AT)tiac.net), May 15 2008 %E A139764 More terms from _T. D. Noe_ and _R. J. Mathar_, May 22 2008