This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139819 #32 Feb 16 2025 08:33:08 %S A139819 10,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,34,35, %T A139819 36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60, %U A139819 61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,89 %N A139819 Complement of repdigit numbers A010785. %C A139819 Identical to (base 10) non-palindromic numbers A029742 up to a(83) = 101 which is a term of this sequence but not in A029742. - _M. F. Hasler_, Sep 08 2015 %H A139819 Reinhard Zumkeller, <a href="/A139819/b139819.txt">Table of n, a(n) for n = 1..10000</a> %H A139819 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Repdigit.html">Repdigit</a>. %H A139819 Wikipedia, <a href="http://en.wikipedia.org/wiki/Repdigit">Repdigit</a> %H A139819 Chai Wah Wu, <a href="https://arxiv.org/abs/2409.05844">Algorithms for complementary sequences</a>, arXiv:2409.05844 [math.NT], 2024. %F A139819 A202022(a(n)) = 0. - _Reinhard Zumkeller_, Dec 09 2011 %p A139819 isA139819 := proc(n) %p A139819 convert(n,base,10) ; %p A139819 convert(%,set) ; %p A139819 simplify(nops(%) >1 ) ; %p A139819 end proc: # _R. J. Mathar_, Jan 17 2017 %o A139819 (Haskell) a139819 n = a139819_list !! (n-1) %o A139819 a139819_list = filter ((== 0) . a202022) [0..] -- _Reinhard Zumkeller_, Dec 09 2011 %o A139819 (PARI) is_A139819(n)=#Set(digits(n))>1 \\ _M. F. Hasler_, Sep 08 2015 %o A139819 (Python) %o A139819 def A139819(n): %o A139819 m, k = n, n+9*((l:=len(str(n)))-1)+9*n//(10**l-1) %o A139819 while m != k: %o A139819 m, k = k, n+9*((l:=len(str(k)))-1)+9*k//(10**l-1) %o A139819 return m # _Chai Wah Wu_, Sep 04 2024 %Y A139819 Cf. A066484 (subsequence). %Y A139819 Cf. A029742 (non-palindromic in base 10), A016038 (in any base), A050813 (in bases 2..10). %K A139819 nonn,base %O A139819 1,1 %A A139819 _N. J. A. Sloane_, Jun 02 2008