This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139823 #7 Jun 15 2018 09:27:35 %S A139823 1,4,3,0,6,3,4,5,2,4,3,6,1,1,6,8,6,5,7,0,6,6,1,8,0,3,3,7,5,5,9,0,2,9, %T A139823 5,5,4,7,0,6,8,7,3,0,9,8,5,0,5,3,9,8,7,9,1,7,6,0,7,5,5,4,5,8,9,2,6,8, %U A139823 9,4,6,7,1,8,1,4,9,9,5,5,8,2,1,5,4,3,6,5,4,4,9,2,6,2,1,8,6,6,8,1,3,4,3,7,1 %N A139823 Decimal expansion of constant c = Sum_{n>=0} C(1/2^n, n). %H A139823 G. C. Greubel, <a href="/A139823/b139823.txt">Table of n, a(n) for n = 1..5000</a> %F A139823 c = Sum_{n>=0} log(1 + 1/2^n)^n/n! . %e A139823 c = 1.43063452436116865706618033755902955470687309850539879176075545... %e A139823 c = 1 + 1/2 - 3/32 + 35/1024 - 7285/524288 + 1570863/268435456 -+... %e A139823 c = 1 + log(3/2) + log(5/4)^2/2! + log(9/8)^3/3! + log(17/16)^4/4! +... %e A139823 The formulas for this constant illustrate the identity: %e A139823 Sum_{n>=0} log(1 + q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y, n)*x^n. %t A139823 RealDigits[Total[Table[Binomial[1/2^n,n],{n,0,1000}]],10,120][[1]] (* _Harvey P. Dale_, Nov 13 2014 *) %o A139823 (PARI) a(n)=local(c=sum(m=0,n,log(1+1/2^m)^m/m!));floor(c*10^n)%10 %Y A139823 Cf. A139824, A139825. %K A139823 cons,nonn %O A139823 1,2 %A A139823 _Paul D. Hanna_, May 01 2008