cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139827 Primes of the form 2x^2 + 2xy + 17y^2.

This page as a plain text file.
%I A139827 #42 Oct 30 2023 07:37:43
%S A139827 2,17,29,41,101,149,173,197,233,281,293,461,557,569,593,677,701,761,
%T A139827 809,821,857,941,953,1097,1217,1229,1289,1361,1481,1493,1553,1601,
%U A139827 1613,1733,1877,1889,1913,1949,1997,2081,2129,2141,2153,2213,2273,2309,2393,2417
%N A139827 Primes of the form 2x^2 + 2xy + 17y^2.
%C A139827 Discriminant = -132.
%C A139827 Consider the quadratic form f(x,y) = ax^2 + bxy + cy^2. When the discriminant d=b^2-4ac is -4 times an idoneal number (A000926), there is exactly one class for each genus. As a result, the primes generated by f(x,y) are the same as the primes congruent to S (mod -d), where S is a set of numbers less than -d. The table on page 60 of Cox shows that there are exactly 331 quadratic forms having this property. The 217 sequences starting with this one complete the collection in the OEIS.
%C A139827 When a=1 and b=0, f(x,y) is a quadratic form whose congruences are discussed in A139642. Let N be an idoneal number. Then there are 2^r reduced quadratic forms whose discriminant is -4N, where r=1,2,3, or 4. By collecting the residuals p (mod 4N) for primes p generated by the i-th reduced quadratic form, we can empirically find a set Si. To show that the 2^r sets Si are complete, we only need to show that the union of the Si is equal to the set of numbers k such that the Jacobi symbol (-k/4N)=1.
%D A139827 David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
%H A139827 Ray Chandler, <a href="/A139827/b139827.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H A139827 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139827 The primes are congruent to {2, 17, 29, 41, 65, 101} (mod 132).
%t A139827 QuadPrimes2[2, -2, 17, 2500] (* see A106856 *)
%t A139827 t = Table[{2, 17, 29, 41, 65, 101} + 132*n, {n, 0, 50}]; Select[Flatten[t], PrimeQ] (* _T. D. Noe_, Jun 21 2012 *)
%o A139827 (Magma) [ p: p in PrimesUpTo(2500) | p mod 132 in {2, 17, 29, 41, 65, 101}]; // _Vincenzo Librandi_, Jul 29 2012
%o A139827 (PARI) v=[2, 17, 29, 41, 65, 101]; select(p->setsearch(v,p%132),primes(100)) \\ _Charles R Greathouse IV_, Jan 08 2013
%Y A139827 Cf. A139643, A139841-A139843 (d=-408), A139644, A139844-A139850 (d=-420), A139645, A139851-A139853 (d=-448), A139502, A139854-A139860 (d=-480), A139646, A139861-A139863 (d=-520), A139647, A139864-A139866 (d=-532), A139648, A139867-A139873 (d=-660), A139506, A139874-A139880 (d=-672), A139649, A139881-A139883 (d=-708), A139650, A139884-A139886 (d=-760), A139651, A139887-A139893 (d=-840), A139652, A139894-A139896 (d=-928), A139502, A139855, A139857, A139858, A139897-A139899, A139902 (d=-960).
%Y A139827 Cf. also  A139653, A139904-A139906 (d=-1012), A139654, A139907-A139913 (d=-1092), A139655, A139914-A139920 (d=-1120), A139656, A139921-A139927 (d=-1248), A139657, A139928-A139934 (d=-1320), A139658, A139935-A139941 (d=-1380), A139659, A139942-A139948 (d=-1428), A139660, A139949-A139955 (d=-1540), A139661, A139956-A139962 (d=-1632), A139662, A139963-A139969 (d=-1848), A139663, A139970-A139976 (d=-2080), A139664, A139977-A139983 (d=-3040), A139665, A139984-A139998 (d=-3360), A139666, A139999-A140013 (d=-5280), A139667, A140014-A140028 (d=-5460), A139668, A140029-A140043 (d=-7392).
%Y A139827 For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
%K A139827 nonn,easy
%O A139827 1,1
%A A139827 _T. D. Noe_, May 02 2008, May 07 2008