cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139841 Primes of the form 2x^2 + 51y^2.

This page as a plain text file.
%I A139841 #18 Sep 08 2022 08:45:33
%S A139841 2,53,59,83,101,149,179,251,293,389,443,461,467,491,509,557,563,587,
%T A139841 659,701,773,797,971,1019,1109,1181,1259,1277,1283,1301,1307,1373,
%U A139841 1427,1613,1619,1667,1709,1733,1787,1811,1973,1997,2027,2099,2141
%N A139841 Primes of the form 2x^2 + 51y^2.
%C A139841 Discriminant = -408. See A139827 for more information.
%H A139841 Vincenzo Librandi and Ray Chandler, <a href="/A139841/b139841.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A139841 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139841 The primes are congruent to {2, 35, 53, 59, 77, 83, 101, 149, 155, 179, 203, 251, 293, 341, 365, 389, 395} (mod 408).
%t A139841 QuadPrimes2[2, 0, 51, 10000] (* see A106856 *)
%o A139841 (Magma) [ p: p in PrimesUpTo(3000) | p mod 408 in {2, 35, 53, 59, 77, 83, 101, 149, 155, 179, 203, 251, 293, 341, 365, 389, 395}]; // _Vincenzo Librandi_, Jul 29 2012
%o A139841 (PARI) list(lim)=my(v=List([2]), s=[35, 53, 59, 77, 83, 101, 149, 155, 179, 203, 251, 293, 341, 365, 389, 395]); forprime(p=53, lim, if(setsearch(s, p%408), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017
%K A139841 nonn,easy
%O A139841 1,1
%A A139841 _T. D. Noe_, May 02 2008