This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139856 #18 Sep 08 2022 08:45:34 %S A139856 5,29,101,149,269,389,461,509,701,821,941,1061,1109,1181,1229,1301, %T A139856 1709,1901,1949,2069,2141,2309,2381,2549,2621,2741,2789,2861,2909, %U A139856 3221,3389,3461,3581,3701,3821,3989,4229,4349,4421,5021,5189,5261 %N A139856 Primes of the form 5x^2 + 24y^2. %C A139856 Discriminant=-480. See A139827 for more information. %C A139856 Except for 5, also primes of the form 21x^2+6xy+29y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A139856 Vincenzo Librandi and Ray Chandler, <a href="/A139856/b139856.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139856 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139856 Except for 5, the primes are congruent to {29, 101} (mod 120). %t A139856 QuadPrimes2[5, 0, 24, 10000] (* see A106856 *) %o A139856 (Magma) [5] cat [ p: p in PrimesUpTo(6000) | p mod 120 in {29, 101}]; // _Vincenzo Librandi_, Jul 29 2012 %o A139856 (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\5), w=5*x^2; for(y=0, sqrtint((lim-w)\24), if(isprime(t=w+24*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 22 2017 %Y A139856 Cf. A140633. %K A139856 nonn,easy %O A139856 1,1 %A A139856 _T. D. Noe_, May 02 2008