This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139857 #20 Sep 08 2022 08:45:34 %S A139857 23,47,167,263,383,503,647,743,863,887,983,1103,1223,1367,1487,1583, %T A139857 1607,1823,1847,2063,2087,2207,2423,2447,2543,2663,2687,2903,2927, %U A139857 3023,3167,3407,3527,3623,3767,3863,4007,4127,4463,4583,4703,4943 %N A139857 Primes of the form 8x^2 + 15y^2. %C A139857 Discriminant= = -480. See A139827 for more information. %C A139857 Also primes of the form 12x^2 + 12xy + 23y^2, which has discriminant = -960. - _T. D. Noe_, May 07 2008 %C A139857 Also primes of the forms 23x^2 + 22xy + 47y^2 and 23x^2 + 8xy + 32y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A139857 Ray Chandler, <a href="/A139857/b139857.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139857 William C. Jagy and Irving Kaplansky, <a href="/A244019/a244019.pdf">Positive definite binary quadratic forms that represent the same primes</a> [Cached copy] See Table II. %H A139857 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139857 The primes are congruent to {23, 47} (mod 120). %t A139857 QuadPrimes2[8, 0, 15, 10000] (* see A106856 *) %o A139857 (Magma) [ p: p in PrimesUpTo(6000) | p mod 120 in {23, 47}]; // _Vincenzo Librandi_, Jul 29 2012 %o A139857 (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\8), w=8*x^2; for(y=1, sqrtint((lim-w)\15), if(isprime(t=w+15*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 22 2017 %K A139857 nonn,easy %O A139857 1,1 %A A139857 _T. D. Noe_, May 02 2008