This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139858 #19 Sep 08 2022 08:45:34 %S A139858 17,113,137,233,257,353,593,617,857,953,977,1097,1193,1217,1433,1553, %T A139858 1697,1913,2153,2273,2297,2393,2417,2633,2657,2753,2777,2897,3137, %U A139858 3257,3593,3617,3833,4073,4217,4337,4457,4673,4793,4817,4937,5153 %N A139858 Primes of the form 8x^2+8xy+17y^2. %C A139858 Discriminant=-480. See A139827 for more information. %C A139858 Also primes of the form 17x^2+14xy+17y^2, which has discriminant=-960. - _T. D. Noe_, May 07 2008 %C A139858 Also primes of the forms 17x^2+16xy+32y^2 and 17x^2+6xy+57y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A139858 Ray Chandler, <a href="/A139858/b139858.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139858 William C. Jagy and Irving Kaplansky, <a href="/A244019/a244019.pdf">Positive definite binary quadratic forms that represent the same primes</a> [Cached copy] See Item 15 of Table II. %H A139858 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139858 The primes are congruent to {17, 113} (mod 120). %t A139858 QuadPrimes2[8, -8, 17, 10000] (* see A106856 *) %o A139858 (Magma) [ p: p in PrimesUpTo(6000) | p mod 120 in {17, 113}]; // _Vincenzo Librandi_, Jul 29 2012 %K A139858 nonn,easy %O A139858 1,1 %A A139858 _T. D. Noe_, May 02 2008