cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139861 Primes of the form 2x^2 + 65y^2.

This page as a plain text file.
%I A139861 #19 Sep 08 2022 08:45:34
%S A139861 2,67,73,83,97,137,163,193,227,307,353,457,577,587,593,617,643,683,
%T A139861 787,827,947,977,1033,1097,1123,1163,1217,1307,1523,1553,1627,1657,
%U A139861 1697,1723,1747,1753,1787,1867,1913,1987,2017,2113,2137,2153,2203
%N A139861 Primes of the form 2x^2 + 65y^2.
%C A139861 Discriminant = -520. See A139827 for more information.
%H A139861 Vincenzo Librandi and Ray Chandler, <a href="/A139861/b139861.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A139861 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139861 The primes are congruent to {2, 33, 57, 67, 73, 83, 97, 123, 137, 163, 177, 187, 193, 203, 227, 267, 297, 307, 323, 353, 427, 457, 473, 483, 513} (mod 520).
%t A139861 QuadPrimes2[2, 0, 65, 10000] (* see A106856 *)
%o A139861 (Magma) [ p: p in PrimesUpTo(3000) | p mod 520 in {2, 33, 57, 67, 73, 83, 97, 123, 137, 163, 177, 187, 193, 203, 227, 267, 297, 307, 323, 353, 427, 457, 473, 483, 513}]; // _Vincenzo Librandi_, Jul 29 2012
%o A139861 (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\65), if(isprime(t=w+65*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Mar 07 2017
%K A139861 nonn,easy
%O A139861 1,1
%A A139861 _T. D. Noe_, May 02 2008