This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139864 #19 Sep 08 2022 08:45:34 %S A139864 2,67,71,79,107,127,151,179,211,331,379,431,487,547,599,659,683,743, %T A139864 751,827,863,907,911,991,1019,1171,1283,1367,1439,1471,1523,1579,1663, %U A139864 1667,1723,1747,2003,2027,2083,2111,2143,2179,2207,2311,2339,2347 %N A139864 Primes of the form 2x^2 + 2xy + 67y^2. %C A139864 Discriminant = -532. See A139827 for more information. %H A139864 Vincenzo Librandi and Ray Chandler, <a href="/A139864/b139864.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139864 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139864 The primes are congruent to {2, 15, 51, 67, 71, 79, 107, 127, 135, 151, 155, 179, 183, 211, 219, 295, 303, 319, 331, 375, 379, 407, 431, 459, 471, 487, 515, 527} (mod 532). %t A139864 QuadPrimes2[2, -2, 67, 10000] (* see A106856 *) %o A139864 (Magma) [ p: p in PrimesUpTo(3000) | p mod 532 in {2, 15, 51, 67, 71, 79, 107, 127, 135, 151, 155, 179, 183, 211, 219, 295, 303, 319, 331, 375, 379, 407, 431, 459, 471, 487, 515, 527}]; // _Vincenzo Librandi_, Jul 29 2012 %K A139864 nonn,easy %O A139864 1,1 %A A139864 _T. D. Noe_, May 02 2008