cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139873 Primes of the form 13x^2 + 4xy + 13y^2.

This page as a plain text file.
%I A139873 #19 Sep 08 2022 08:45:34
%S A139873 13,73,193,277,337,373,457,613,673,733,853,877,937,997,1033,1117,1297,
%T A139873 1597,1657,1693,1777,1933,1993,2053,2437,2593,2617,2713,2833,2857,
%U A139873 2917,3253,3313,3373,3517,3637,3673,4153,4177,4297,4597,4813,4957
%N A139873 Primes of the form 13x^2 + 4xy + 13y^2.
%C A139873 Discriminant = -660. See A139827 for more information.
%H A139873 Vincenzo Librandi and Ray Chandler, <a href="/A139873/b139873.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A139873 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139873 The primes are congruent to {13, 73, 193, 217, 277, 337, 373, 457, 613, 637} (mod 660).
%t A139873 Union[QuadPrimes2[13, 4, 13, 10000], QuadPrimes2[13, -4, 13, 10000]] (* see A106856 *)
%o A139873 (Magma) [ p: p in PrimesUpTo(6000) | p mod 660 in {13, 73, 193, 217, 277, 337, 373, 457, 613, 637}]; // _Vincenzo Librandi_, Jul 30 2012
%K A139873 nonn,easy
%O A139873 1,1
%A A139873 _T. D. Noe_, May 02 2008