cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139877 Primes of the form 8x^2+21y^2.

This page as a plain text file.
%I A139877 #16 Sep 08 2022 08:45:34
%S A139877 29,53,149,197,317,389,557,653,701,821,1061,1229,1373,1493,1709,1733,
%T A139877 1877,1901,1997,2069,2213,2237,2333,2381,2549,2741,2837,2909,3221,
%U A139877 3389,3413,3557,3581,3677,3917,4013,4229,4253,4349,4397,4421,4517
%N A139877 Primes of the form 8x^2+21y^2.
%C A139877 Discriminant=-672. See A139827 for more information.
%C A139877 Also primes of the form 29x^2+12xy+36y^2. See A140633. - _T. D. Noe_, May 19 2008
%H A139877 Vincenzo Librandi and Ray Chandler, <a href="/A139877/b139877.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A139877 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139877 The primes are congruent to {29, 53, 149} (mod 168).
%t A139877 QuadPrimes2[8, 0, 21, 10000] (* see A106856 *)
%o A139877 (Magma) [ p: p in PrimesUpTo(6000) | p mod 168 in {29, 53, 149}]; // _Vincenzo Librandi_, Jul 30 2012
%K A139877 nonn,easy
%O A139877 1,1
%A A139877 _T. D. Noe_, May 02 2008