This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139883 #17 Sep 08 2022 08:45:34 %S A139883 31,43,67,103,151,211,283,367,463,571,691,739,751,811,823,859,919,967, %T A139883 991,1123,1171,1279,1291,1399,1447,1459,1471,1483,1531,1567,1627,1663, %U A139883 1699,1783,1831,1867,1879,1987,1999,2083,2179,2239,2311,2371,2383 %N A139883 Primes of the form 6x^2+6xy+31y^2. %C A139883 Discriminant=-708. See A139827 for more information. %H A139883 Vincenzo Librandi and Ray Chandler, <a href="/A139883/b139883.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139883 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139883 The primes are congruent to {31, 43, 55, 67, 91, 103, 115, 151, 187, 211, 235, 247, 259, 283, 319, 367, 391, 415, 427, 451, 463, 511, 571, 583, 655, 667, 679, 691, 703} (mod 708). %t A139883 QuadPrimes2[6, -6, 31, 10000] (* see A106856 *) %o A139883 (Magma) [ p: p in PrimesUpTo(4000) | p mod 708 in {31, 43, 55, 67, 91, 103, 115, 151, 187, 211, 235, 247, 259, 283, 319, 367, 391, 415, 427, 451, 463, 511, 571, 583, 655, 667, 679, 691, 703}]; // _Vincenzo Librandi_, Jul 30 2012 %K A139883 nonn,easy %O A139883 1,1 %A A139883 _T. D. Noe_, May 02 2008