This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139893 #16 Sep 08 2022 08:45:34 %S A139893 29,71,149,191,239,359,389,431,599,701,821,911,1031,1061,1229,1439, %T A139893 1709,1871,1901,2039,2069,2111,2381,2549,2591,2711,2741,2879,2909, %U A139893 3119,3221,3389,3581,3719,4229,4271,4349,4391,4421,4799,5021,5189 %N A139893 Primes of the form 14x^2+15y^2. %C A139893 Discriminant=-840. See A139827 for more information. %H A139893 Vincenzo Librandi and Ray Chandler, <a href="/A139893/b139893.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139893 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139893 The primes are congruent to {29, 71, 149, 191, 221, 239, 359, 389, 431, 599, 701, 821} (mod 840). %t A139893 QuadPrimes2[14, 0, 15, 10000] (* see A106856 *) %o A139893 (Magma) [ p: p in PrimesUpTo(6000) | p mod 840 in {29, 71, 149, 191, 221, 239, 359, 389, 431, 599, 701, 821}]; // _Vincenzo Librandi_, Jul 30 2012 %K A139893 nonn,easy %O A139893 1,1 %A A139893 _T. D. Noe_, May 02 2008