cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139894 Primes of the form 4x^2+4xy+59y^2.

This page as a plain text file.
%I A139894 #18 Sep 08 2022 08:45:34
%S A139894 59,67,83,107,139,179,227,283,347,419,499,523,547,571,587,643,683,691,
%T A139894 787,811,883,1019,1051,1283,1427,1451,1459,1483,1499,1531,1571,1579,
%U A139894 1619,1747,1811,1907,1979,2083,2179,2203,2267,2371,2411,2459,2539
%N A139894 Primes of the form 4x^2+4xy+59y^2.
%C A139894 Discriminant=-928. See A139827 for more information.
%H A139894 Vincenzo Librandi and Ray Chandler, <a href="/A139894/b139894.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A139894 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139894 The primes are congruent to {35, 51, 59, 67, 83, 91, 107, 115, 123, 139, 179, 187, 219, 227} (mod 232).
%t A139894 QuadPrimes2[4, -4, 59, 10000] (* see A106856 *)
%o A139894 (Magma) [p: p in PrimesUpTo(3000) | p mod 232 in [35, 51, 59, 67, 83, 91, 107, 115, 123, 139, 179, 187, 219, 227]]; // _Vincenzo Librandi_, Jul 31 2012
%K A139894 nonn,easy
%O A139894 1,1
%A A139894 _T. D. Noe_, May 02 2008