cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139896 Primes of the form 8x^2+8xy+31y^2.

This page as a plain text file.
%I A139896 #18 Sep 08 2022 08:45:34
%S A139896 31,47,79,127,191,263,271,311,359,367,479,503,599,607,727,743,751,823,
%T A139896 839,887,911,967,983,1063,1087,1279,1303,1319,1423,1439,1447,1471,
%U A139896 1487,1511,1583,1607,1663,1759,1783,1871,1951,1999,2143,2207,2351
%N A139896 Primes of the form 8x^2+8xy+31y^2.
%C A139896 Discriminant=-928. See A139827 for more information.
%H A139896 Vincenzo Librandi and Ray Chandler, <a href="/A139896/b139896.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A139896 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139896 The primes are congruent to {15, 31, 39, 47, 55, 79, 95, 119, 127, 135, 143, 159, 191, 215} (mod 232).
%t A139896 QuadPrimes2[8, -8, 31, 10000] (* see A106856 *)
%o A139896 (Magma) [p: p in PrimesUpTo(3000) | p mod 232 in [15, 31, 39, 47, 55, 79, 95, 119, 127, 135, 143, 159, 191, 215]]; // _Vincenzo Librandi_, Jul 31 2012
%K A139896 nonn,easy
%O A139896 1,1
%A A139896 _T. D. Noe_, May 02 2008