This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139904 #20 Sep 08 2022 08:45:34 %S A139904 2,127,131,139,151,167,211,239,271,307,347,439,491,547,607,739,811, %T A139904 887,967,1051,1151,1163,1223,1231,1283,1319,1327,1427,1451,1531,1559, %U A139904 1619,1823,1867,1979,1987,2063,2111,2239,2243,2339,2371,2543,2647 %N A139904 Primes of the form 2x^2+2xy+127y^2. %C A139904 Discriminant=-1012. See A139827 for more information. %H A139904 Vincenzo Librandi and Ray Chandler, <a href="/A139904/b139904.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139904 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139904 The primes are congruent to {2, 35, 39, 87, 95, 123, 127, 131, 139, 151, 167, 211, 215, 219, 239, 255, 259, 271, 303, 307, 315, 347, 351, 371, 395, 403, 415, 439, 491, 519, 535, 547, 579, 591, 607, 611, 623, 679, 699, 703, 739, 767, 783, 791, 811, 831, 855, 875, 887, 899, 915, 923, 959, 967, 975, 1007} (mod 1012). %t A139904 QuadPrimes2[2, -2, 127, 10000] (* see A106856 *) %o A139904 (Magma) [p: p in PrimesUpTo(3000) | p mod 1012 in [2, 35, 39, 87, 95, 123, 127, 131, 139, 151, 167, 211, 215, 219, 239, 255, 259, 271, 303, 307, 315, 347, 351, 371, 395, 403, 415, 439, 491, 519, 535, 547, 579, 591, 607, 611, 623, 679, 699, 703, 739, 767, 783, 791, 811, 831, 855, 875, 887, 899, 915, 923, 959, 967, 975, 1007]]; // _Vincenzo Librandi_, Jul 31 2012 %K A139904 nonn,easy %O A139904 1,1 %A A139904 _T. D. Noe_, May 02 2008