This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139906 #17 Sep 08 2022 08:45:34 %S A139906 17,61,109,149,241,281,293,337,373,457,557,569,613,677,701,733,769, %T A139906 937,941,953,1009,1033,1069,1201,1217,1229,1249,1493,1597,1601,1693, %U A139906 1801,1861,1877,1949,1993,1997,2081,2089,2153,2213,2273,2389,2437 %N A139906 Primes of the form 17x^2+12xy+17y^2. %C A139906 Discriminant=-1012. See A139827 for more information. %H A139906 Vincenzo Librandi and Ray Chandler, <a href="/A139906/b139906.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139906 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139906 The primes are congruent to {17, 21, 57, 61, 65, 109, 129, 145, 149, 153, 189, 205, 217, 237, 241, 249, 281, 293, 321, 329, 337, 365, 373, 413, 425, 457, 481, 497, 505, 513, 525, 549, 557, 569, 585, 589, 613, 677, 681, 689, 701, 733, 769, 789, 833, 849, 865, 893, 937, 941, 953, 965, 981, 985, 1009} (mod 1012). %t A139906 Union[QuadPrimes2[17, 12, 17, 10000], QuadPrimes2[17, -12, 17, 10000]] (* see A106856 *) %o A139906 (Magma) [ p: p in PrimesUpTo(3000) | p mod 1012 in {17, 21, 57, 61, 65, 109, 129, 145, 149, 153, 189, 205, 217, 237, 241, 249, 281, 293, 321, 329, 337, 365, 373, 413, 425, 457, 481, 497, 505, 513, 525, 549, 557, 569, 585, 589, 613, 677, 681, 689, 701, 733, 769, 789, 833, 849, 865, 893, 937, 941, 953, 965, 981, 985, 1009}]; // _Vincenzo Librandi_, Jul 31 2012 %K A139906 nonn,easy %O A139906 1,1 %A A139906 _T. D. Noe_, May 02 2008