cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139913 Primes of the form 17x^2+8xy+17y^2.

This page as a plain text file.
%I A139913 #17 Sep 08 2022 08:45:34
%S A139913 17,101,173,257,269,521,677,797,857,881,1013,1049,1109,1193,1277,1301,
%T A139913 1361,1433,1613,1637,1889,1949,1973,2141,2357,2393,2441,2609,2729,
%U A139913 2861,3041,3449,3461,3533,3617,3701,3797,3821,4073,4133,4157,4241
%N A139913 Primes of the form 17x^2+8xy+17y^2.
%C A139913 Discriminant=-1092. See A139827 for more information.
%H A139913 Vincenzo Librandi and Ray Chandler, <a href="/A139913/b139913.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A139913 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139913 The primes are congruent to {17, 101, 173, 185, 209, 257, 269, 341, 425, 521, 545, 677, 797, 857, 881, 965, 1013, 1049} (mod 1092).
%t A139913 Union[QuadPrimes2[17, 8, 17, 10000], QuadPrimes2[17, -8, 17, 10000]] (* see A106856 *)
%o A139913 (Magma) [ p: p in PrimesUpTo(5000) | p mod 1092 in [17, 101, 173, 185, 209, 257, 269, 341, 425, 521, 545, 677, 797, 857, 881, 965, 1013, 1049]]; // _Vincenzo Librandi_, Aug 01 2012
%K A139913 nonn,easy
%O A139913 1,1
%A A139913 _T. D. Noe_, May 02 2008