This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139923 #16 Sep 08 2022 08:45:34 %S A139923 47,71,167,239,359,383,431,479,743,839,863,983,1103,1151,1319,1367, %T A139923 1487,1607,2039,2087,2111,2351,2399,2423,2543,2663,2711,2879,2927, %U A139923 3023,3167,3191,3359,3671,3863,3911,4127,4271,4583,4751,4799,4919 %N A139923 Primes of the form 8x^2+39y^2. %C A139923 Discriminant=-1248. See A139827 for more information. %C A139923 Also primes of the form 15x^2+12xy+44y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A139923 Vincenzo Librandi and Ray Chandler, <a href="/A139923/b139923.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139923 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139923 The primes are congruent to {47, 71, 119, 167, 215, 239} (mod 312). %t A139923 QuadPrimes2[8, 0, 39, 10000] (* see A106856 *) %o A139923 (Magma) [ p: p in PrimesUpTo(6000) | p mod 312 in [47, 71, 119, 167, 215, 239]]; // _Vincenzo Librandi_, Aug 01 2012 %K A139923 nonn,easy %O A139923 1,1 %A A139923 _T. D. Noe_, May 02 2008