This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139924 #21 Sep 08 2022 08:45:34 %S A139924 41,89,137,281,353,401,449,593,617,761,929,977,1097,1217,1289,1409, %T A139924 1553,1601,1697,1721,1913,2153,2273,2633,2657,2777,2801,2897,2969, %U A139924 3089,3209,3257,3593,3833,3881,4049,4217,4337,4409,4457,4649,4673 %N A139924 Primes of the form 8x^2+8xy+41y^2. %C A139924 Discriminant=-1248. See A139827 for more information. %C A139924 Also primes of the forms 32x^2+16xy+41y^2 and 20x^2+12xy+33y^2. See A140633. - _T. D. Noe_, May 19 2008 %C A139924 In base 12, the sequence is 35, 75, E5, 1E5, 255, 295, 315, 415, 435, 535, 655, 695, 775, 855, 8E5, 995, X95, E15, E95, EE5, 1135, 12E5, 1395, 1635, 1655, 1735, 1755, 1815, 1875, 1955, 1X35, 1X75, 20E5, 2275, 22E5, 2415, 2535, 2615, 2675, 26E5, 2835, 2855. Moreover, the discriminant is 880 and all primes are {35, 75, E5, 115, 1E5, 215} mod 220. - _Walter Kehowski_, May 31 2008 %H A139924 Vincenzo Librandi and Ray Chandler, <a href="/A139924/b139924.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139924 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139924 The primes are congruent to {41, 89, 137, 161, 281, 305} (mod 312). %t A139924 QuadPrimes2[8, -8, 41, 10000] (* see A106856 *) %o A139924 (Magma) [ p: p in PrimesUpTo(6000) | p mod 312 in [41, 89, 137, 161, 281, 305]]; // _Vincenzo Librandi_, Aug 01 2012 %K A139924 nonn,easy %O A139924 1,1 %A A139924 _T. D. Noe_, May 02 2008