cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139927 Primes of the form 19x^2+14xy+19y^2.

This page as a plain text file.
%I A139927 #17 Sep 08 2022 08:45:34
%S A139927 19,67,163,307,331,379,499,619,643,691,739,787,811,1051,1123,1579,
%T A139927 1627,1723,1747,1867,1987,2179,2203,2251,2347,2371,2659,2683,2803,
%U A139927 2971,3187,3307,3499,3547,3739,3907,3931,4051,4219,4243,4363,4483
%N A139927 Primes of the form 19x^2+14xy+19y^2.
%C A139927 Discriminant=-1248. See A139827 for more information.
%H A139927 Vincenzo Librandi and Ray Chandler, <a href="/A139927/b139927.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A139927 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A139927 The primes are congruent to {19, 67, 115, 163, 187, 307} (mod 312).
%t A139927 Union[QuadPrimes2[19, 14, 19, 10000], QuadPrimes2[19, -14, 19, 10000]] (* see A106856 *)
%o A139927 (Magma) [ p: p in PrimesUpTo(6000) | p mod 312 in [19, 67, 115, 163, 187, 307]]; // _Vincenzo Librandi_, Aug 02 2012
%K A139927 nonn,easy
%O A139927 1,1
%A A139927 _T. D. Noe_, May 02 2008