This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139934 #16 Sep 08 2022 08:45:34 %S A139934 37,103,157,223,367,397,463,487,727,757,823,1087,1093,1213,1237,1303, %T A139934 1423,1453,1543,1567,1783,2143,2293,2557,2677,2797,2887,3037,3463, %U A139934 3613,3727,3733,3853,3877,3943,4093,4327,4357,4423,4447,4783,4933 %N A139934 Primes of the form 15x^2+22y^2. %C A139934 Discriminant=-1320. See A139827 for more information. %H A139934 Vincenzo Librandi and Ray Chandler, <a href="/A139934/b139934.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139934 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139934 The primes are congruent to {37, 103, 133, 157, 223, 247, 367, 397, 463, 487, 493, 727, 757, 823, 973, 1087, 1093, 1213, 1237, 1303} (mod 1320). %t A139934 QuadPrimes2[15, 0, 22, 10000] (* see A106856 *) %o A139934 (Magma) [ p: p in PrimesUpTo(6000) | p mod 1320 in [37, 103, 133, 157, 223, 247, 367, 397, 463, 487, 493, 727, 757, 823, 973, 1087, 1093, 1213, 1237, 1303]]; // _Vincenzo Librandi_, Aug 02 2012 %K A139934 nonn,easy %O A139934 1,1 %A A139934 _T. D. Noe_, May 02 2008