This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139935 #17 Sep 08 2022 08:45:34 %S A139935 2,173,197,233,257,317,353,593,653,857,1013,1097,1277,1373,1553,1613, %T A139935 1637,1697,1733,1913,1973,2237,2393,2417,2477,2657,2693,2753,2837, %U A139935 2957,3137,3413,3617,3797,4073,4133,4217,4337,4373,4397,4457,4493 %N A139935 Primes of the form 2x^2+2xy+173y^2. %C A139935 Discriminant=-1380. See A139827 for more information. %H A139935 Vincenzo Librandi and Ray Chandler, <a href="/A139935/b139935.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139935 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139935 The primes are congruent to {2, 77, 173, 197, 233, 257, 317, 353, 377, 473, 533, 593, 653, 737, 857, 1013, 1037, 1097, 1133, 1277, 1313, 1337, 1373} (mod 1380). %t A139935 QuadPrimes2[2, -2, 173, 10000] (* see A106856 *) %o A139935 (Magma)[ p: p in PrimesUpTo(6000) | p mod 1380 in [2, 77, 173, 197, 233, 257, 317, 353, 377, 473, 533, 593, 653, 737, 857, 1013, 1037, 1097, 1133, 1277, 1313, 1337, 1373]]; // _Vincenzo Librandi_, Aug 02 2012 %K A139935 nonn,easy %O A139935 1,1 %A A139935 _T. D. Noe_, May 02 2008