This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139941 #17 Sep 08 2022 08:45:34 %S A139941 19,79,199,379,571,619,631,751,919,1171,1279,1399,1459,1471,1579,1699, %T A139941 1759,1831,1951,1999,2011,2131,2179,2251,2311,2551,2659,2719,2731, %U A139941 2851,3079,3271,3319,3331,3391,3511,3559,3631,3691,3931,4099,4111 %N A139941 Primes of the form 19x^2+8xy+19y^2. %C A139941 Discriminant=-1380. See A139827 for more information. %H A139941 Vincenzo Librandi and Ray Chandler, <a href="/A139941/b139941.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139941 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139941 The primes are congruent to {19, 79, 91, 199, 319, 379, 451, 511, 559, 571, 619, 631, 751, 799, 871, 919, 931, 1111, 1171, 1279, 1339, 1351} (mod 1380). %t A139941 Union[QuadPrimes2[19, 8, 19, 10000], QuadPrimes2[19, -8, 19, 10000]] (* see A106856 *) %o A139941 (Magma) [ p: p in PrimesUpTo(6000) | p mod 1380 in [19, 79, 91, 199, 319, 379, 451, 511, 559, 571, 619, 631, 751, 799, 871, 919, 931, 1111, 1171, 1279, 1339, 1351]]; // _Vincenzo Librandi_, Aug 02 2012 %K A139941 nonn,easy %O A139941 1,1 %A A139941 _T. D. Noe_, May 02 2008