This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139963 #16 Sep 08 2022 08:45:34 %S A139963 2,233,239,263,281,359,431,569,743,809,953,1031,1289,1481,1583,1913, %T A139963 2081,2087,2111,2129,2153,2207,2417,2543,2591,2657,2801,2879,2969, %U A139963 3119,3137,3329,3593,3761,3929,4001,4127,4391,4463,4649,4817,4967 %N A139963 Primes of the form 2x^2+231y^2. %C A139963 Discriminant=-1848. See A139827 for more information. %H A139963 Vincenzo Librandi and Ray Chandler, <a href="/A139963/b139963.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139963 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139963 The primes are congruent to {2, 65, 95, 233, 239, 263, 281, 305, 359, 431, 527, 569, 695, 743, 767, 809, 953, 1031, 1073, 1121, 1271, 1289, 1415, 1481, 1535, 1583, 1625, 1649, 1745, 1751, 1817} (mod 1848). %t A139963 QuadPrimes2[2, 0, 231, 10000] (* see A106856 *) %o A139963 (Magma) [ p: p in PrimesUpTo(5000) | p mod 1848 in [2, 65, 95, 233, 239, 263, 281, 305, 359, 431, 527, 569, 695, 743, 767, 809, 953, 1031, 1073, 1121, 1271, 1289, 1415, 1481, 1535, 1583, 1625, 1649, 1745, 1751, 1817]]; // _Vincenzo Librandi_, Aug 02 2012 %K A139963 nonn,easy %O A139963 1,1 %A A139963 _T. D. Noe_, May 02 2008