This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139990 #20 Aug 04 2025 01:07:43 %S A139990 73,97,313,433,577,937,1153,1657,1753,1777,1993,2113,2593,2617,2833, %T A139990 2953,3433,3457,3673,3793,4177,4273,4297,4513,5113,5857,5953,6793, %U A139990 7297,7537,7873,7993,8377,8713,9337,9817,10177,10513,10657,10993 %N A139990 Primes of the form 12*x^2+12*x*y+73*y^2. %C A139990 Discriminant=-3360. See A139827 for more information. %C A139990 Also primes of the forms 48*x^2+24*x*y+73*y^2 and 33*x^2+12*x*y+52*y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A139990 Vincenzo Librandi and Ray Chandler, <a href="/A139990/b139990.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139990 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139990 The primes are congruent to {73, 97, 313, 433, 577, 817} (mod 840). %t A139990 QuadPrimes2[12, -12, 73, 10000] (* see A106856 *) %o A139990 (Magma) [p: p in PrimesUpTo(11000) | p mod 840 in [73, 97, 313, 433, 577, 817]]; // _Vincenzo Librandi_, Aug 03 2012 %K A139990 nonn,easy %O A139990 1,1 %A A139990 _T. D. Noe_, May 02 2008