This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139991 #16 Sep 08 2022 08:45:34 %S A139991 71,191,239,359,431,599,911,1031,1439,1871,2039,2111,2591,2711,2879, %T A139991 3119,3719,4271,4391,4799,5231,5279,5399,5471,5639,6311,6791,6911, %U A139991 6959,7079,7151,7919,8831,8999,9311,9431,9479,9839,10151,10271,11159 %N A139991 Primes of the form 15x^2+56y^2. %C A139991 Discriminant=-3360. See A139827 for more information. %C A139991 Also primes of the forms 39x^2+12xy+44y^2 and 36x^2+12xy+71y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A139991 Vincenzo Librandi and Ray Chandler, <a href="/A139991/b139991.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139991 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139991 The primes are congruent to {71, 191, 239, 359, 431, 599} (mod 840). %t A139991 QuadPrimes2[15, 0, 56, 10000] (* see A106856 *) %o A139991 (Magma) [p: p in PrimesUpTo(12000) | p mod 840 in [71, 191, 239, 359, 431, 599]]; // _Vincenzo Librandi_, Aug 03 2012 %K A139991 nonn,easy %O A139991 1,1 %A A139991 _T. D. Noe_, May 02 2008