This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A139998 #17 Sep 08 2022 08:45:34 %S A139998 31,199,271,439,1039,1231,1279,1399,1879,1951,2239,2551,2719,2791, %T A139998 3079,3391,3559,3631,3919,4231,4591,4639,4759,5431,5479,6079,6151, %U A139998 6271,6991,7159,7591,7759,7951,8431,8599,8839,9439,9511,9631,9679 %N A139998 Primes of the form 31x^2+22xy+31y^2. %C A139998 Discriminant=-3360. See A139827 for more information. %C A139998 Also primes of the forms 31x^2+18xy+111y^2 and 31x^2+10xy+55y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A139998 Vincenzo Librandi and Ray Chandler, <a href="/A139998/b139998.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A139998 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A139998 The primes are congruent to {31, 199, 271, 391, 439, 559} (mod 840). %t A139998 Union[QuadPrimes2[31, 22, 31, 10000], QuadPrimes2[31, -22, 31, 10000]] (* see A106856 *) %o A139998 (Magma) [p: p in PrimesUpTo(12000) | p mod 840 in [31, 199, 271, 391, 439, 559]]; // _Vincenzo Librandi_, Aug 03 2012 %K A139998 nonn,easy %O A139998 1,1 %A A139998 _T. D. Noe_, May 02 2008