This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140065 #54 Aug 24 2025 11:42:33 %S A140065 1,3,12,28,51,81,118,162,213,271,336,408,487,573,666,766,873,987,1108, %T A140065 1236,1371,1513,1662,1818,1981,2151,2328,2512,2703,2901,3106,3318, %U A140065 3537,3763,3996,4236,4483,4737,4998,5266,5541,5823,6112,6408,6711,7021,7338,7662 %N A140065 a(n) = (7*n^2 - 17*n + 12)/2. %C A140065 Binomial transform of [1, 2, 7, 0, 0, 0, ...]. %C A140065 This sequence together with 1, 6, 18, 37, 63, 96, ... with signature (3,-3,1) [not yet in OEIS] contain all numbers k such that 56*k - 47 is a square. - _Klaus Purath_, Oct 21 2021 %H A140065 G. C. Greubel, <a href="/A140065/b140065.txt">Table of n, a(n) for n = 1..1000</a> %H A140065 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A140065 A007318 * [1, 2, 7, 0, 0, 0, ...]. %F A140065 a(n) = A000217(n) + 6*A000217(n-2) = (A140064(n) + A140066(n))/2. - _R. J. Mathar_, May 06 2008 %F A140065 O.g.f.: x*(1+6*x^2)/(1-x)^3. - _Alexander R. Povolotsky_, May 06 2008 %F A140065 a(n) = 7*n + a(n-1) - 12 for n > 1, a(1)=1. - _Vincenzo Librandi_, Jul 08 2010 %F A140065 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 4. - _Klaus Purath_, Oct 21 2021 %F A140065 E.g.f.: exp(x)*(6 - 5*x + 7*x^2/2) - 6. - _Elmo R. Oliveira_, Oct 31 2024 %e A140065 a(4) = 28 = (1, 3, 3, 1) * (1, 2, 7, 0) = (1 + 6 + 21 + 0). %p A140065 seq((12-17*n+7*n^2)*1/2, n=1..40); # _Emeric Deutsch_, May 07 2008 %t A140065 Table[(7 n^2 - 17 n + 12)/2, {n, 1, 50}] (* _Bruno Berselli_, Mar 12 2015 *) %t A140065 LinearRecurrence[{3,-3,1},{1,3,12},50] (* _Harvey P. Dale_, May 28 2017 *) %o A140065 (PARI) x = 'x + O('x^50); Vec(x*(1+6*x^2)/(1-x)^3) \\ _G. C. Greubel_, Feb 23 2017 %o A140065 (Magma) [(7*n^2 - 17*n + 12)/2 : n in [1..60]]; // _Wesley Ivan Hurt_, Oct 10 2021 %Y A140065 Cf. A000217, A007318, A140064, A140066. %K A140065 nonn,easy,changed %O A140065 1,2 %A A140065 _Gary W. Adamson_, May 03 2008 %E A140065 More terms from _R. J. Mathar_ and _Emeric Deutsch_, May 06 2008 %E A140065 More terms from _Vladimir Joseph Stephan Orlovsky_, Oct 25 2008