This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140070 #16 Feb 18 2020 10:23:33 %S A140070 1,1,1,1,4,1,1,13,5,1,1,40,18,8,1,1,121,58,42,9,1,1,364,179,184,51,12, %T A140070 1,1,1093,543,731,235,87,13,1,1,3280,1636,2736,966,496,100,16,1,1, %U A140070 9841,4916,9844,3702,2454,596,148,17,1,1,29524,14757,34448,13546,11064,3050,1040,165,20,1 %N A140070 Triangle read by rows, iterates of matrix X * [1,0,0,0,...], where X = an infinite lower bidiagonal matrix with [1,3,1,3,1,3,...] in the main diagonal and [1,1,1,...] in the subdiagonal. %C A140070 Row sums = A006012: (1, 2, 6, 20, 68, 232, 792, 2704,...). %C A140070 Companion to triangle A140071. %F A140070 Triangle read by rows, iterates of matrix X * [1,0,0,0,...], where X = an infinite lower bidiagonal matrix with [1,3,1,3,1,3,...] in the main diagonal and [1,1,1,...] in the subdiagonal; with the rest zeros. %F A140070 From _Peter Bala_, Jan 17 2014: (Start) %F A140070 O.g.f.: (1 + (x - 3)*z)/(1 - 4*z - (x^2 - 3)*z^2) = 1 + (x + 1)*z + (x^2 + 4*x + 1)*z^2 + .... %F A140070 Recurrence equation: T(n,k) = 4*T(n-1,k) - 3*T(n-2,k) + T(n-2,k-2). %F A140070 Recurrence equation for row polynomials: R(n,x) = 4*R(n-1,x) + (x^2 - 3)*R(n-2,x) with R(0,x) = 1 and R(1,x) = 1 + x. %F A140070 Another recurrence equation: R(n,x) = (x + 2)*R(n-1,x) - R(n-1,-x) with R(0,x) = 1. Cf. A157751. (End) %e A140070 First few rows of the triangle are: %e A140070 1; %e A140070 1, 1; %e A140070 1, 4, 1; %e A140070 1, 13, 5, 1; %e A140070 1, 40, 18, 8, 1; %e A140070 1, 121, 58, 42, 9, 1; %e A140070 1, 364, 179, 184, 51, 12, 1; %e A140070 1, 1093, 543, 731, 235, 87, 13, 1; %e A140070 1, 3280, 1636, 2736, 966, 496, 100, 16, 1; %e A140070 ... %p A140070 T:= proc(n, k) option remember; %p A140070 `if`(k<0 or k>n, 0, `if`(k=0 or k=n, 1, %p A140070 4*T(n-1, k) - 3*T(n-2, k) + T(n-2, k-2))) %p A140070 end: %p A140070 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Feb 18 2020 %t A140070 With[{m = 10}, CoefficientList[CoefficientList[Series[(1 + (y - 3)*x)/(1 - 4*x - (y^2 - 3)*x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* _Georg Fischer_, Feb 18 2020 *) %Y A140070 Cf. A006012, A140071, A157751. %K A140070 nonn,tabl %O A140070 1,5 %A A140070 _Gary W. Adamson_, May 04 2008