cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140080 Fix e = 3; a(n) = minimal Hamming distance between the binary representation of n and the binary representation of any multiple ke (0 <= k <= n/e) which is a child of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Nadia Heninger and N. J. A. Sloane, Jun 03 2008

Keywords

Comments

A number m is a child of n if the binary representation of n has a 1 in every position where the binary representation of m has a 1.
In other words, this tells us how closely (in Hamming weight) we can approximate n "from below" by a multiple of e.

Examples

			If n = 14 = 1110_2, take k=2, ke = 6 = 110_2, which is Hamming distance 1 from n. This is the best we can do, so a(14) = 1.
		

Crossrefs

For e=2 and 4 through 9 see A000035 and A140081 through A140086.

Programs

  • Fortran
    See Sloane link.