This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140094 #9 Feb 03 2013 19:25:42 %S A140094 1,1,4,25,199,1855,19387,221407,2717782,35455981,487672243,7029980797, %T A140094 105732907498,1653377947393,26805765569863,449568735630517, %U A140094 7785116448484318,138980739891821269,2554369130466577138 %N A140094 G.f. satisfies: A(x) = x/(1 - A(A(A(x)))). %H A140094 Paul D. Hanna, <a href="/A140094/b140094.txt">Table of n, a(n), n = 1..100.</a> %F A140094 G.f. A(x) satisfies: %F A140094 (1) A(x) = Series_Reversion(x - x*A(A(x))). %F A140094 (2) A(x) = x + Sum_{n=1} d^(n-1)/dx^(n-1) x^n * A(A(x))^n / n!. %F A140094 (3) A(x) = x*exp( Sum_{n=1} d^(n-1)/dx^(n-1) x^n * A(A(x))^n/x / n! ). %F A140094 Define A_{n} such that A_{n+1}(x) = A( A_{n}(x) ) with A_0(x) = x, %F A140094 then A_{n}(x) = A_{n-1}/[1 - A_{n+2}(x)] ; %F A140094 thus A_{n}(x) = 1 - A_{n-3}(x) / A_{n-2}(x). %F A140094 G.f. A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with: %F A140094 A = 1 + x*A*C; %F A140094 B = A + x*B*D; %F A140094 C = B + x*C*E; %F A140094 D = C + x*D*F; %F A140094 E = D + x*E*G; ... %e A140094 G.f.: A(x) = x + x^2 + 4*x^3 + 25*x^4 + 199*x^5 + 1855*x^6 + 19387*x^7 +... %e A140094 Iterations A_{n+1}(x) = A( A_{n}(x) ) are related as follows. %e A140094 A_2(x) = 1 - Series_Reversion( A(x) ) / x; %e A140094 A_3(x) = 1 - x / A(x); %e A140094 A_4(x) = 1 - A(x) / A_2(x); %e A140094 A_5(x) = 1 - A_2(x) / A_3(x); %e A140094 A_6(x) = 1 - A_3(x) / A_4(x); ... %e A140094 where the iterations of A(x) begin: %e A140094 A_2(x) = x + 2*x^2 + 10*x^3 + 71*x^4 + 616*x^5 + 6119*x^6 + 67210*x^7 +...; %e A140094 A_3(x) = x + 3*x^2 + 18*x^3 + 144*x^4 + 1365*x^5 + 14544*x^6 +...; %e A140094 A_4(x) = x + 4*x^2 + 28*x^3 + 250*x^4 + 2584*x^5 + 29584*x^6 +...; %e A140094 A_5(x) = x + 5*x^2 + 40*x^3 + 395*x^4 + 4435*x^5 + 54515*x^6 +...; %e A140094 A_6(x) = x + 6*x^2 + 54*x^3 + 585*x^4 + 7104*x^5 + 93555*x^6 +...; %e A140094 ... %e A140094 Iterations are also related by continued fractions: %e A140094 A(x) = x/(1 - A_2(x)/(1 - A_4(x)/(1 - A_6(x)/(1 -...)))) ; %e A140094 A_2(x) = A(x)/(1 - A_3(x)/(1 - A_5(x)/(1 - A_7(x)/(1 -...)))). %o A140094 (PARI) {a(n)=local(A); if(n<0, 0, n++; A=x+O(x^2); for(i=2, n, A=x/(1-subst(A, x, subst(A, x, A)))); polcoeff(A, n))} %Y A140094 Cf. A140095, A088714. %Y A140094 Cf. A088717, A091713, A120971, A139702. %K A140094 nonn %O A140094 1,3 %A A140094 _Paul D. Hanna_, May 08 2008, May 20 2008 %E A140094 Name, formulas, and examples revised by _Paul D. Hanna_, Feb 03 2013