This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140133 #26 Feb 16 2025 08:33:08 %S A140133 1,8,5,3,2,6,8,4,4,8,7,0,7,9,8,7,0,3,3,2,2,1,9,3,6,4,0,3,4,3,9,7,2,7, %T A140133 8,8,7,9,4,6,9,6,5,3,8,9,6,3,2,5,4,6,4,0,1,3,5,5,7,8,1,0,0,2,0,6,7,8, %U A140133 7,9,7,3,6,5,0,8,5,1,6,6,2,7,1,1,7,1,3,3,4,8,8,5,5,6,9,0,2,5,8,8 %N A140133 Decimal expansion of the area enclosed in the lens-shaped region of the Laplace Limit. %C A140133 See Weisstein for complex analysis function. %H A140133 G. C. Greubel, <a href="/A140133/b140133.txt">Table of n, a(n) for n = 1..3000</a> %H A140133 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/LaplaceLimit.html">Laplace Limit</a> (value given is incorrect) %e A140133 1.8532684487079870332219364034397278879469653896325464... %t A140133 f[x_] := (Sqrt[x - Tanh[x]]*(x*Csch[x]^2 + 2*x - Coth[x]))/(2* Sqrt[-x + Coth[x]]); xmax = x /. FindRoot[Coth[x] - x == 0, {x, 1}, WorkingPrecision -> 200]; First[ RealDigits[ Chop[ Quiet[ NIntegrate[f[x], {x, 0, xmax}, WorkingPrecision -> 200, MaxRecursion -> 20]]*4], 10, 100]] (* _Jean-François Alcover_, Jun 07 2012, after _D. S. McNeil_ *) %o A140133 (Sage) %o A140133 def A140133_cons(dps=200): %o A140133 from mpmath import mp, sqrt, tanh, coth, csch, findroot, quad %o A140133 mp.dps = 2*dps # safety %o A140133 def f(x): return 1/2*sqrt(x - tanh(x))*(x*csch(x)^2 + 2*x - coth(x))/sqrt(-x + coth(x)) %o A140133 xmax = findroot(lambda x: coth(x)-x, 1) %o A140133 return quad(f, [0, xmax])*4 # _D. S. McNeil_, Feb 01 2011 %Y A140133 Cf. A033259, A085984. %K A140133 cons,nonn %O A140133 1,2 %A A140133 _Jonathan Vos Post_, Jun 04 2008