cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140136 Numerator coefficients for generators of lattice path enumeration square array A111910.

This page as a plain text file.
%I A140136 #36 Jan 17 2025 09:27:54
%S A140136 1,1,1,1,7,7,1,1,20,75,75,20,1,1,42,364,1001,1001,364,42,1,1,75,1212,
%T A140136 6720,15288,15288,6720,1212,75,1,1,121,3223,30723,127908,255816,
%U A140136 255816,127908,30723,3223,121,1,1,182,7371,109538,737737,2510508
%N A140136 Numerator coefficients for generators of lattice path enumeration square array A111910.
%H A140136 Michael De Vlieger, <a href="/A140136/b140136.txt">Table of n, a(n) for n = 0..10100</a> (rows 0..100, flattened)
%H A140136 G. Kreweras, <a href="http://www.numdam.org/article/BURO_1965__6__9_0.pdf">Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers</a>, Cahiers du B.U.R.O. 6 (1965), 9-107; see p. 93.
%H A140136 G. Kreweras and H. Niederhausen, <a href="http://dx.doi.org/10.1016/S0195-6698(81)80020-0">Solution of an enumerative problem connected with lattice paths</a>, European J. Combin. 2 (1981), 55-60; see p. 60.
%H A140136 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 8.
%F A140136 (Sum_{k=0..n} T(n,k) * x^k) / (1-x)^(3*n+1) generates row n of A111910.
%F A140136 Triangle T(q,n), where T(n,q) = Sum_{j = 0..n} (-1)^j*C(3*q+1,j)*K(n-j,q) with K(p,q) = A111910(p,q).
%e A140136 Triangle begins:
%e A140136   1;
%e A140136   1,  1;
%e A140136   1,  7,    7,     1;
%e A140136   1, 20,   75,    75,    20,     1;
%e A140136   1, 42,  364,  1001,  1001,   364,   42,    1;
%e A140136   1, 75, 1212,  6720, 15288, 15288, 6720, 1212, 75, 1;
%e A140136   ...
%t A140136 T[n_, k_] := ((k + n - 1)! (2 (k + n) - 3)! HypergeometricPFQ[{2 - 3 k, 1/2 - n, 1 - n, -n}, {1 - k - n, 3/2 - k - n, 2 - k - n}, 1])/(k! (2 k - 1)! n! (2 n - 1)!);
%t A140136 Join[{{1}}, Table[T[n, k], {k, 2, 8}, {n, 1, 2 k - 2}]] // Flatten (* _Peter Luschny_, Sep 04 2019 *)
%Y A140136 Row sums are A006335.
%Y A140136 Cf. A111910.
%K A140136 easy,nonn,tabf
%O A140136 0,5
%A A140136 _Paul Barry_, May 09 2008