cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140164 Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, ...].

This page as a plain text file.
%I A140164 #32 Nov 18 2024 17:14:32
%S A140164 1,2,4,8,14,20,26,32,38,44,50,56,62,68,74,80,86,92,98,104,110,116,122,
%T A140164 128,134,140,146,152,158,164,170,176,182,188,194,200,206,212,218,224,
%U A140164 230,236,242,248,254,260,266,272,278,284,290,296,302,308,314,320,326
%N A140164 Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, ...].
%C A140164 Sum of antidiagonal terms of the following arithmetic array:
%C A140164   1,  1,  1,  1,  1,  1,  1,  1, ...
%C A140164   1,  2,  3,  4,  5,  6,  7,  8, ...
%C A140164   1,  3,  5,  7,  9, 11, 13, 15, ...
%C A140164   1,  4,  7, 10, 13, 16, 19, 22, ...
%C A140164   1,  5,  9, 13, 17, 21, 25, 29, ...
%C A140164   1,  6, 11, 16, 21, 26, 31, 36, ...
%C A140164   1,  7, 13, 19, 25, 31, 37, 43, ...
%C A140164   1,  8, 15, 22, 29, 36, 43, 50, ...
%C A140164   ...
%C A140164 For [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55, ...], see A??????.
%H A140164 G. C. Greubel, <a href="/A140164/b140164.txt">Table of n, a(n) for n = 1..1000</a>
%H A140164 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A140164 Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55,...]; where A028387 = (1, 5, 11, 19, 29, 41,...), such that A028387(n) = (2*T(n) - 1).
%F A140164 From _R. J. Mathar_, May 03 2010: (Start)
%F A140164 G.f.: x*(1+x^2+2*x^3+2*x^4)/(1-x)^2. [G.f. amended by _Georg Fischer_, May 12 2019]
%F A140164 a(n) = A016933(n-2), n>2. (End)
%F A140164 a(n) = 2*(3n-5), n >= 3, if offset is 0 instead of 1. - _Daniel Forgues_, Jul 17 2016
%e A140164 a(4) = 8 = (1, 3, 3, 1) dot (1, 1, 1, 1) = (1 + 3 + 3 + 1).
%e A140164 a(5) = 14 = (4 + 5 + 4 + 1).
%p A140164 From _R. J. Mathar_, May 03 2010: (Start)
%p A140164 A028387 := proc(n) option remember; if n <= 2 then op(n+1,[1,5,11]) ; else 3*procname(n-1)-3*procname(n-2)+procname(n-3) ; end if; end proc:
%p A140164 read("transforms") ; L := [1,1,1,1,-1, seq((-1)^(n+1)*A028387(n), n=0..60)]; BINOMIAL(L) ; (End)
%t A140164 Table[If[n < 4, 2^(n - 1), 6 n - 16], {n, 60}] (* or *)
%t A140164 Rest@CoefficientList[Series[x*(1+x^2+2x^3+2x^4)/(1-x)^2, {x, 0, 60}], x] (* _Michael De Vlieger_, Jul 18 2016 *)
%o A140164 (PARI) a(n)=if(n<4,2^(n-1),6*n-16) \\ _Charles R Greathouse IV_, Jul 17 2016
%o A140164 (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( x*(1+x^2+2*x^3+2*x^4)/(1-x)^2 )); // _G. C. Greubel_, May 12 2019
%o A140164 (Sage) (x*(1+x^2+2*x^3+2*x^4)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # _G. C. Greubel_, May 12 2019
%o A140164 (GAP) Concatenation([1,2,4], List([4..60], n-> 6*n-16)); # _G. C. Greubel_, May 12 2019
%Y A140164 Cf. A028387.
%K A140164 nonn,easy
%O A140164 1,2
%A A140164 _Gary W. Adamson_, May 10 2008
%E A140164 More terms from _R. J. Mathar_, May 03 2010