cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140182 Binomial transform of an infinite bidiagonal matrix with (1,3,1,3,1,3,...) in the main diagonal, (1,1,1,...) in the subdiagonal, the rest zeros.

This page as a plain text file.
%I A140182 #8 Jul 21 2019 17:19:33
%S A140182 1,2,3,3,7,1,4,12,4,3,5,18,10,13,1,6,25,20,35,6,3,7,33,35,75,21,19,1,
%T A140182 8,42,56,140,56,70,8,3,9,52,84,238,126,196,36,25,1,10,63,120,378,252,
%U A140182 462,120,117,10,3,11,75,165,570,462,966,330,405,55,31,1
%N A140182 Binomial transform of an infinite bidiagonal matrix with (1,3,1,3,1,3,...) in the main diagonal, (1,1,1,...) in the subdiagonal, the rest zeros.
%C A140182 Row sums = A052940: (1, 5, 11, 23, 47, 95, ...).
%F A140182 A007318 as an infinite lower triangular matrix * a bidiagonal matrix with (1,3,1,3,1,3,...) in the main diagonal, (1,1,1,...) in the subdiagonal and the rest zeros.
%F A140182 From _Emeric Deutsch_, May 18 2008: (Start)
%F A140182 T(n, 2k) = binomial(n+1, 2k+1);
%F A140182 T(n, 2k+1) = 2*binomial(n, 2k+1) + binomial(n+1, 2k+2). (End)
%e A140182 First few rows of the triangle are:
%e A140182   1;
%e A140182   2,  3;
%e A140182   3,  7,  1;
%e A140182   4, 12,  4,  3;
%e A140182   5, 18, 10, 13,  1;
%e A140182   6, 25, 20, 35,  6,  3;
%e A140182   7, 33, 35, 75, 21, 19,  1;
%e A140182   ...
%p A140182 T:=proc(n,k) if `mod`(k,2)=0 then binomial(n+1,k+1) else 2*binomial(n,k)+binomial(n+1,k+1) end if end proc: for n from 0 to 10 do seq(T(n,k),k=0..n) end do; # yields sequence in triangular form - _Emeric Deutsch_, May 18 2008
%Y A140182 Cf. A052940.
%K A140182 nonn,tabl
%O A140182 0,2
%A A140182 _Gary W. Adamson_, May 11 2008