A140199 a(n) = the number of pairs of (not necessarily distinct) positive integers j and k where j <= n and k <= n such that k+j is prime.
1, 2, 3, 5, 6, 8, 10, 12, 15, 19, 22, 26, 29, 32, 36, 41, 45, 49, 53, 57, 62, 68, 73, 79, 85, 91, 98, 105, 111, 118, 125, 132, 139, 147, 155, 164, 173, 182, 191, 201, 210, 220, 229, 238, 248, 258, 267, 276, 286, 296, 307, 319, 330, 342, 355, 368, 382, 396, 409, 422
Offset: 1
Keywords
Examples
For n = 4 there are 5 pairs of positive integers, each <= n=4, that sum to a prime: 1+1=2, 1+2=3, 2+3=5, 1+4=5 and 3+4=7.
Programs
-
Maple
A108954 := proc(n) numtheory[pi](2*n)-numtheory[pi](n) ; end: A140199 := proc(n) add( A108954(k),k=1..n) ; end: seq(A140199(n),n=1..80) ; # R. J. Mathar, Jun 19 2008
-
Mathematica
Table[Count[Union[Sort/@Tuples[Range[n],{2}]],?(PrimeQ[Total[#]]&)],{n,60}] (* _Harvey P. Dale, Mar 21 2021 *)
Formula
Extensions
More terms from R. J. Mathar, Jun 19 2008