A140080 Fix e = 3; a(n) = minimal Hamming distance between the binary representation of n and the binary representation of any multiple ke (0 <= k <= n/e) which is a child of n.
0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0
Keywords
Examples
If n = 14 = 1110_2, take k=2, ke = 6 = 110_2, which is Hamming distance 1 from n. This is the best we can do, so a(14) = 1.
Links
- Nadia Heninger and N. J. A. Sloane, Table of n, a(n) for n = 0..5000
- N. J. A. Sloane, Fortran program for this and related sequences
Crossrefs
Programs
-
Fortran
See Sloane link.
Comments