cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140212 Numbers n not a multiple of 10 such that reverse(n^2) = reverse(n)^2, but reverse(n) is different from n.

Original entry on oeis.org

12, 13, 21, 31, 102, 103, 112, 113, 122, 201, 211, 221, 301, 311, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1112, 1113, 1121, 1122, 1201, 1202, 1211, 1212, 1301, 2001, 2011, 2012, 2021, 2022, 2101, 2102, 2111, 2121, 2201, 2202, 2211, 3001, 3011, 3101, 3111
Offset: 1

Views

Author

Jean-François Alcover, Mar 08 2011

Keywords

Comments

This sequence is similar to A035123 but excludes integers such as 33 or 99 or 3168, because they don't meet the commutativity criterion reverse(n^2) = (reverse(n))^2.
Compare for instance:
{reverse(3168^2), reverse(3168)^2} -> {42263001, 74183769}
with:
{reverse(3111^2), reverse(3111)^2} -> {1238769, 1238769}
Terms can be matched by pairs:
{{12, 21}, {13, 31}, {102, 201}, {103, 301}, {112, 211}, {113, 311}, {122, 221}, {1002, 2001}, {1003, 3001}, {1011, 1101}, {1012, 2101}, {1013, 3101}, {1021, 1201}, {1022, 2201}, {1031, 1301}, {1102, 2011}, {1103, 3011}, {1112, 2111}, {1113, 3111}, {1121, 1211}, {1122, 2211}, {1202, 2021}, {1212, 2121}, {2012, 2102}, {2022, 2202},...}

Examples

			113 belongs to the sequence because sqrt(reverse(113^2)) = 311, which is 113 written backwards, whereas 99 does not: sqrt(reverse(99^2)) = 33.
		

Crossrefs

Cf. A064021. Subsequence of A035123.

Programs

  • Mathematica
    r[n_] := FromDigits[Reverse[IntegerDigits[n]]];
    Cases[Range[10000], n_ /; Mod[n, 10] != 0 && r[n^2] != n^2 && r[n^2] == r[n]^2 ]

Formula

a(n)^2 = A064021(n). - Giovanni Resta, Jun 22 2018