A140212 Numbers n not a multiple of 10 such that reverse(n^2) = reverse(n)^2, but reverse(n) is different from n.
12, 13, 21, 31, 102, 103, 112, 113, 122, 201, 211, 221, 301, 311, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1112, 1113, 1121, 1122, 1201, 1202, 1211, 1212, 1301, 2001, 2011, 2012, 2021, 2022, 2101, 2102, 2111, 2121, 2201, 2202, 2211, 3001, 3011, 3101, 3111
Offset: 1
Examples
113 belongs to the sequence because sqrt(reverse(113^2)) = 311, which is 113 written backwards, whereas 99 does not: sqrt(reverse(99^2)) = 33.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 300 terms from Vincenzo Librandi)
Programs
-
Mathematica
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Cases[Range[10000], n_ /; Mod[n, 10] != 0 && r[n^2] != n^2 && r[n^2] == r[n]^2 ]
Formula
a(n)^2 = A064021(n). - Giovanni Resta, Jun 22 2018
Comments