This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140250 #21 May 22 2023 10:07:04 %S A140250 343,15625,34965783,106496424,3023464536,3659383421,7222633237, %T A140250 10403062487,11179320256,11993263569,25881801912,36495256013, %U A140250 40672093519,47516597848,49917330568,63616767488,84200449887,96323848704,573234910443,972947676429 %N A140250 a(n) is the largest cube <= A066525(n). %C A140250 Suggested by Carlos Rivera's Prime Puzzles & Problems Connection, Puzzle 443 (which asks if a sum of consecutive cubes can be a cube or a prime cube). %H A140250 Nathaniel Johnston, <a href="/A140250/b140250.txt">Table of n, a(n) for n = 1..1000</a> %H A140250 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_443.htm">Puzzle 443. Sum of cubes of consecutive primes</a>, The Prime Puzzles and Problems Connection. %e A140250 In A066525 the first term is 503, the sum of cubes of the first four consecutive primes, 2 3 5 7. The cube just less than 503 is 343, a(1) in this sequence. %p A140250 with(numtheory): P:=proc(n) add(ithprime(k)^3,k=1..n): end: %p A140250 A098563 := proc(n)local m: option remember: if(n=0)then return 0: fi: m:=procname(n-1)+2: while true do if(isprime(P(m)))then return m:fi: m:=m+2:od: end: %p A140250 A140250 := proc(n)return floor(surd(P(A098563(n)),3))^3: end: %p A140250 seq(A140250(n),n=1..20); # _Nathaniel Johnston_, Apr 21 2011 %t A140250 Floor[CubeRoot[#]]^3&/@Select[Accumulate[Prime[Range[400]]^3],PrimeQ] (* _Harvey P. Dale_, May 22 2023 *) %Y A140250 Cf. A066525, A098563, A140251. %K A140250 nonn %O A140250 1,1 %A A140250 _Enoch Haga_, May 15 2008 %E A140250 Edited by _N. J. A. Sloane_, Aug 25 2008 %E A140250 a(11)-a(20) from _Nathaniel Johnston_, Apr 21 2011