This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140253 #26 Feb 16 2025 08:33:08 %S A140253 -1,1,2,7,14,31,62,127,254,511,1022,2047,4094,8191,16382,32767,65534, %T A140253 131071,262142,524287,1048574,2097151,4194302,8388607,16777214, %U A140253 33554431,67108862,134217727,268435454,536870911 %N A140253 a(2*n) = 2*(2*4^(n-1)-1) and a(2*n-1) = 2*4^(n-1)-1. %C A140253 The inverse binomial transform is 1, 1, 4, -2, 10, -14, 34, -62 which leads to (-1)^(n+1)*A135440(n). %C A140253 For n > 0: A266161(a(n)) = n and A266161(m) < n for m < a(n). - _Reinhard Zumkeller_, Dec 22 2015 %C A140253 Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 673", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - _Robert Price_, Jul 23 2017 %D A140253 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A140253 Reinhard Zumkeller, <a href="/A140253/b140253.txt">Table of n, a(n) for n = 0..1000</a> %H A140253 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A140253 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A140253 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A140253 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a> %H A140253 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A140253 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A140253 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %H A140253 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2, 1, -2). %F A140253 a(2*n) = 2*A083420(n-1) and a(2*n+1) = A083420(n) %F A140253 a(n+1) - a(n) = A014551(n); Jacobsthal-Lucas numbers. %F A140253 a(2*n) + a(2*n+1) = 9*A002450(n) %F A140253 a(n+1) - 2*a(n) = A010674(n+1); repeat 3, 0. %F A140253 a(n) + A000034(n+1) = A000079(n); powers of 2. %F A140253 a(n)= a(n-1) + 2*a(n-2) + 3. - _Gary Detlefs_, Jun 22 2010 %F A140253 a(n+1) = A000069(2^n); odious numbers. - _Johannes W. Meijer_, Jun 24 2011 %F A140253 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2, a(0) = -1, a(1) = 1, a(2) = 2. - _Philippe Deléham_, Feb 25 2012 %F A140253 G.f.: (x^2+3*x-1)/((1-2*x)*(1-x)*(1+x)). - _Philippe Deléham_, Feb 25 2012 %p A140253 A140253:=proc(n): if type(n, odd) then 2*4^(((n+1)/2)-1)-1 else 2*(2*4^((n/2)-1)-1) fi: end: seq(A140253(n),n=0..29); # _Johannes W. Meijer_, Jun 24 2011 %t A140253 Table[(2^(n+1) - 3 + (-1)^(n+1))/2, {n, 0, 30}] (* _Jean-François Alcover_, Jun 05 2017 *) %o A140253 (Haskell) %o A140253 import Data.List (transpose) %o A140253 a140253 n = a140253_list !! n %o A140253 a140253_list = -1 : concat %o A140253 (transpose [a083420_list, map (* 2) a083420_list]) %o A140253 -- _Reinhard Zumkeller_, Dec 22 2015 %Y A140253 Cf. A000034, A000069, A000079, A002450, A010674, A014551, A083420, A266161. %K A140253 sign,easy %O A140253 0,3 %A A140253 _Paul Curtz_, Jun 23 2008 %E A140253 Edited, corrected and information added by _Johannes W. Meijer_, Jun 24 2011