cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140256 Triangle read by columns: Column k is A014963 aerated with groups of (k-1) zeros.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 2, 2, 0, 1, 5, 0, 0, 0, 1, 1, 3, 2, 0, 0, 1, 7, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 3, 0, 3, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 2, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 0, 2, 0, 0, 0, 0, 0, 1, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, May 16 2008, Jun 11 2008

Keywords

Comments

If the row number n is prime, the row consists of T(n,1)=n followed by n-2 zeros and followed by T(n,n)=1.
Similar to A138618.
Row products of nonzero terms in row n, equals n. - Mats Granvik, May 22 2016

Examples

			First few rows of the triangle are:
   1;
   2, 1;
   3, 0, 1;
   2, 2, 0, 1;
   5, 0, 0, 0, 1;
   1, 3, 2, 0, 0, 1;
   7, 0, 0, 0, 0, 0, 1;
   2, 2, 0, 2, 0, 0, 0, 1;
   3, 0, 3, 0, 0, 0, 0, 0, 1;
   1, 5, 0, 0, 2, 0, 0, 0, 0, 1;
  11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
   1, 1, 2, 3, 0, 2, 0, 0, 0, 0, 0, 1;
  ...
Column 2 = (1, 0, 2, 0, 3, 0, 2, 0, 5, 0, 1, 0, 7, ...).
		

Crossrefs

Cf. A140255 (row sums), A014963.
Row products without the zero terms produce A000027. [Mats Granvik, Oct 08 2009]

Programs

  • Excel
    =if(row()>=column();if(mod(row();column())=0;lookup(roundup(row()/column();0);A000027;A014963);0);"")
  • Mathematica
    t[n_, k_] /; Divisible[n, k] := Exp[ MangoldtLambda[n/k] ]; t[, ] = 0; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 28 2013 *)
    (* recurrence *)
    Clear[t, s, n, k, z, nn];z = 1;nn = 14;t[n_, k_] := t[n, k] = If[k == 1, Zeta[s]*(1 - 1/n^(s - 1)) -Sum[t[n, i]/i^(s - 1), {i, 2, n}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; A = Table[Table[Limit[t[n, k], s -> z], {k, 1, n}], {n, 1, nn}]; Flatten[Exp[A]*Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Apr 09 2016, May 22 2016 *)

Formula

T(n,k) = A014963(n/k) = A014963(A126988(n,k)) if k|n, T(n,k)=0 otherwise. 1 <= k <= n.
From Mats Granvik, Apr 10 2016, May 22 2016: (Start)
Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then zeta(s)*(1 - 1/n^(s - 1)) -Sum_{i=2..n} Ts(n, i)/(i)^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0.
For n not equal to k: Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then zeta(s) -Sum_{i=2..n} Ts(n, i)/i^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0.
Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then log(n) -Sum_{i=2..n} Ts(n, i)/i^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0. (End)
[The above sentences need a lot of work! Parentheses might help. - N. J. A. Sloane, Mar 14 2017]