This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140272 #9 Feb 16 2025 08:33:08 %S A140272 3,8,1,0,6,9,5,6,8,7,7,7,5,6,0,2,6,9,0,8,1,4,9,3,4,2,3,7,9,8,7,4,2,1, %T A140272 3,9,3,8,2,2,4,6,4,7,9,3,8,7,7,6,4,6,9,2,2,2,8,3,1,5,6,9,0,1,3,2,2,5, %U A140272 4,7,0,4,9,6,8,0,9,6,7,9,2,0,4,5,5,0,0,0,2,6,4,8,8,2,5,5,4,8,5,6,1,0,2,3,2 %N A140272 Decimal expansion of arctan(3*sqrt(15)/29). %C A140272 The Brocard angle in radians of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link. %H A140272 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BrocardAngle.html">Brocard Angle</a>. %H A140272 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A140272 arctan(3*sqrt(15)/29) = arctan(4*A140239/29) = arcsin(3*sqrt(915)/244) = arccos(29*sqrt(61)/244). %e A140272 0.38106956877756026908149342379874213938224647938776469222831569013225470496... %t A140272 RealDigits[ArcTan[(3Sqrt[15])/29],10,120][[1]] (* _Harvey P. Dale_, Aug 24 2019 *) %o A140272 (PARI) atan(3*sqrt(15)/29) %Y A140272 Cf. A140273, A140239. %K A140272 cons,nonn %O A140272 0,1 %A A140272 _Rick L. Shepherd_, May 16 2008, Jul 18 2008