This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140406 #24 Aug 28 2022 04:22:19 %S A140406 1,56,1792,43008,860160,15138816,242221056,3598712832,50381979648, %T A140406 671759728640,8598524526592,106309030510592,1275708366127104, %U A140406 14915974742409216,170468282770391040,1909244767028379648,21001692437312176128,227312435792084729856 %N A140406 a(n) = binomial(n+6, 6)*8^n. %C A140406 With a different offset, number of n-permutations (n >= 6) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly six (6) u's. %C A140406 If n=6 then a(0)=1. %C A140406 Example: a(1)=56 because we have %C A140406 uuuuuup, uuuuupu, uuuupuu, uuupuuu, uupuuuu, upuuuuu, puuuuuu, %C A140406 uuuuuur, uuuuuru, uuuuruu, uuuruuu, uuruuuu, uruuuuu, ruuuuuu, %C A140406 uuuuuus, uuuuusu, uuuusuu, uuusuuu, uusuuuu, usuuuuu, suuuuuu, %C A140406 uuuuuut, uuuuutu, uuuutuu, uuutuuu, uutuuuu, utuuuuu, tuuuuuu, %C A140406 uuuuuuv, uuuuuvu, uuuuvuu, uuuvuuu, uuvuuuu, uvuuuuu, vuuuuuu, %C A140406 uuuuuuz, uuuuuzu, uuuuzuu, uuuzuuu, uuzuuuu, uzuuuuu, zuuuuuu, %C A140406 uuuuuux, uuuuuxu, uuuuxuu, uuuxuuu, uuxuuuu, uxuuuuu, xuuuuuu, %C A140406 uuuuuuy, uuuuuyu, uuuuyuu, uuuyuuu, uuyuuuu, uyuuuuu, yuuuuuu. %H A140406 Vincenzo Librandi, <a href="/A140406/b140406.txt">Table of n, a(n) for n = 0..400</a> %H A140406 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (56,-1344,17920,-143360,688128,-1835008,2097152). %F A140406 G.f.: 1/(1-8*x)^7. - _Zerinvary Lajos_, Aug 06 2008 %F A140406 a(n) = 56*a(n-1) - 1344*a(n-2) + 17920*a(n-3) - 143360*a(n-4) + 688128*a(n-5) - 1835008*a(n-6) + 2097152*a(n-7). - _Harvey P. Dale_, Dec 15 2011 %F A140406 From _Amiram Eldar_, Aug 28 2022: (Start) %F A140406 Sum_{n>=0} 1/a(n) = 538628/5 - 806736*log(8/7). %F A140406 Sum_{n>=0} (-1)^n/a(n) = 2834352*log(9/8) - 1669188/5. (End) %p A140406 seq(binomial(n+6,6)*8^n,n=0..17); %t A140406 Table[Binomial[n+6,6]8^n,{n,0,20}] (* or *) LinearRecurrence[ {56,-1344,17920,-143360,688128,-1835008,2097152},{1,56,1792,43008,860160,15138816,242221056},20] (* _Harvey P. Dale_, Dec 15 2011 *) %o A140406 (Magma) [8^n* Binomial(n+6, 6): n in [0..20]]; // _Vincenzo Librandi_, Oct 16 2011 %o A140406 (PARI) a(n)=binomial(n+6,6)<<(3*n) \\ _Charles R Greathouse IV_, Dec 15 2011 %Y A140406 Cf. A000579, A002409, A036220, A036226, A050988, A054337, A140405. %K A140406 nonn,easy %O A140406 0,2 %A A140406 _Zerinvary Lajos_, Jun 16 2008