cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140456 a(n) is the number of indecomposable involutions of length n.

This page as a plain text file.
%I A140456 #55 Oct 27 2023 21:45:33
%S A140456 1,1,1,3,7,23,71,255,911,3535,13903,57663,243871,1072031,4812575,
%T A140456 22278399,105300287,510764095,2527547455,12794891007,66012404863,
%U A140456 347599231103,1863520447103,10178746224639,56548686860543,319628408814847,1835814213846271
%N A140456 a(n) is the number of indecomposable involutions of length n.
%C A140456 An involution is a self-inverse permutation. A permutation of [n] = {1, 2, ..., n} is indecomposable if it does not fix [j] for any 0 < j < n.
%C A140456 From _Paul Barry_, Nov 26 2009: (Start)
%C A140456 G.f. of a(n+1) is 1/(1-x-2x^2/(1-x-3x^2/(1-x-4x^2/(1-x-5x^2/(1-...))))) (continued fraction).
%C A140456 a(n+1) is the binomial transform of the aeration of A000698(n+1). Hankel transform of a(n+1) is A000178(n+1). (End)
%C A140456 From _Groux Roland_, Mar 17 2011: (Start)
%C A140456 a(n) is the INVERTi transform of A000085(n+1)
%C A140456 a(n) is also the moment of order n for the density: sqrt(2/Pi^3)*exp((x-1)^2/2)/(1-(erf(I*(x-1)/sqrt(2)))^2).
%C A140456 More generally, if c(n)=int(x^n*rho(x),x=a..b) with rho(x) a probability density function of class C1, then the INVERTi transform of (c(1),..c(n),..) starting at n=2 gives the moments of mu(x) = rho(x) / ((s(x))^2+(Pi*rho(x))^2) with s(x) = int( rho'(t)*log(abs(1-t/x)), t=a..b) + rho(b)*log(x/(b-x)) + rho(a)*log((x-a)/x).
%C A140456 (End)
%C A140456 For n>1 sum over all Motzkin paths of length n-2 of products over all peaks p of (x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p. - _Alois P. Heinz_, May 24 2015
%H A140456 Alois P. Heinz, <a href="/A140456/b140456.txt">Table of n, a(n) for n = 1..800</a> (terms n = 1..50 from Joel B. Lewis)
%H A140456 Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
%H A140456 Claudia Malvenuto and Christophe Reutenauer, <a href="https://arxiv.org/abs/2010.06731">Primitive Elements of the Hopf Algebras of Tableaux</a>, arXiv:2010.06731 [math.CO], 2020.
%F A140456 G.f.: 1 - 1/I(x), where I(x) is the ordinary generating function for involutions (A000085).
%F A140456 G.f.: Q(0) +1/x, where Q(k) = 1 - 1/x - (k+1)/Q(k+1) ; (continued fraction). - _Sergei N. Gladkovskii_, Sep 16 2013
%e A140456 The unique indecomposable involution of length 3 is 321. The indecomposable involutions of length 4 are 3412, 4231 and 4321.
%e A140456 G.f. = x + x^2 + 3*x^3 + 7*x^4 + 23*x^5 + 71*x^6 + 255*x^7 + 911*x^8 + ...
%p A140456 b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
%p A140456       `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1)
%p A140456                  + b(x-1, y, false) + b(x-1, y+1, true)))
%p A140456     end:
%p A140456 a:= n-> `if`(n=1, 1, b(n-2, 0, false)):
%p A140456 seq(a(n), n=1..35);  # _Alois P. Heinz_, May 24 2015
%t A140456 CoefficientList[Series[1 - 1/Total[CoefficientList[Series[E^(x + x^2/2), {x, 0, 50}], x] * Range[0, 50]! * x^Range[0, 50]], {x, 0, 50}], x]
%Y A140456 Cf. A000085 (involutions), A000698 (indecomposable fixed-point free involutions), and A003319 (indecomposable permutations).
%Y A140456 Cf. A001006, A258306.
%K A140456 nonn
%O A140456 1,4
%A A140456 _Joel B. Lewis_, Jul 22 2008